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1 Modules

1.1 Basic notions and examples
1.1.1 Modules and homomorphisms
Informally, a module M over a ring R is like a vector space but over a ring.

Definition 1.1. A (left) module M over a ring R is an abelian group with a map Rx M —
M sending (r,m) — r - m such that for r,s € R and z,y € M

Lr(x+y) =r-xz+r-y.
2. (r+s)-z=r-z+s-x
3. (rs)-x=r-(s-x)

4. 1p-z =z (if R has 1).

A right module is the same thing, except the map is M x R — R, so the actions of R on
M is on the right.

Definition 1.2. Let M be an R-module. A submodule N is a subgroup of M such that
r-n € N foreachr € Rand n € N.

Definition 1.3. A homomorphism of modules M7, M5 is a map f : My — M> such that
L f(mi+mz) = f(m1) + f(m2)
2. f(r-m)=r-f(m).

Better (but not standard) notation would be that homomorphisms of left modules
should be written on the right (and vice versa for right modules). So we should write mf,
not fm. This makes it so the second condition gives us that (rm)f = r(mf), which gets
rid of the needless switching of the order of » and f. We will alternate between the two
notations.



Definition 1.4. Let M, N be modules over R. Then Hompg(M, N) is the set of module
homomorphisms from M to N.

If R is commutative, Hompg(M, N) is an R-module.
Definition 1.5. An endomorphism of M is a homomorphism from M to itself.

Definition 1.6. A bimodule is a left module over one ring and a right module over another,
where the left and right actions commute.

Example 1.1. R is an (R, R) bimodule.
1.1.2 Exact sequences of modules
Suppose we have the exact sequence
0—+>A—B—C—0.
Are the following two sequences exact?
0 — Hom(M, A) - Hom(M, B) — Hom(M,C) — 0
0 <+~ Hom(A, N) < Hom(B,N) <- Hom(C, N) + 0
The answer is no.! Look at

07257 7/27 — 0.

Then
0 — Hom(Z/27Z,7) X2, Hom(Z/2Z,7) — Hom(Z/27,7./27) &

=0 =0 =7/27

O<~Hom(Z,7/27) &2 Hom(Z,Z/27) < Hom(Z/27.,7/27) < 0.
Instead, we get exact sequences
0 — Hom(M, A) - Hom(M, B) — Hom(M, C)
Hom(A, N) <~ Hom(B, N) <- Hom(C, N) « 0.

We leave this as an exercise.

!The study of homological algebra is based on the fact that these sequences are not always exact in this
way.



1.1.3 Examples of modules

Example 1.2. Vector spaces over fields are modules.
Example 1.3. Abelian groups are modules over Z.
Example 1.4. Left ideals of R are the same as left submodules of a module R.

Example 1.5. Let G be a group acting on a set S. Form the vector space V' over K with
basis S, and form the group ring K[G]. G acts on V by acting on the basis elements. So
V is a module over the ring K[G].2

Example 1.6. Suppose M is a left module over a ring R. Then Hompg(M, M), the
endomorphisms of M, is a ring, where the product is composition of endomorphisms.
M is a right module over Hompg (M, M). Furthermore, the right action of Hompg (M, M)
commutes with the left action of R on M (follows from the definition of a homomorphism).
So M is a Hompg(M, M) bimodule.

Homp(M, M) is analogous to the permutations of a set S. If we have a group, we can
represent it as the permutations of the set S. Similarly, a ring is often studied as a subring
of Homp (M, M) for some T-module M.

Example 1.7. Take an algebraic number field such as Q[4], where i> = —1. Think of Q[i]
as a vector space over Q, and think of the ring Q[i] as endomorphisms of this vector space.
So we can represent elements of Q[i| as matrices. Matrices are linear transformations of
vector spaces or equivalently homomorphisms of modules.

Pick a basis of Q[i]: {1,7}. The action of 1 is 1 — 1 and ¢ — 4 and the action of u is
1 — 4 and i — —1. So we have the matrices

NS O]

So Q[¢] can be thought of as the matrices

a b
—b a
with a,b € Q.
Look at the invariants of matrices, the trace and the determinant. Here, tr(a+bi) = 2a,
and det(a + bi) = |a + bil.

2The study of these modules is very important in representation theory.



1.2 Free modules

Definition 1.7. The direct sum of modules M, over R is the abelian group @ M, with
the action of R on each component a determined by the action of R on M,.

Definition 1.8. A free module is a module that is a direct sum of copies of R.
In some sense, free modules are the simplest sort of module.

Example 1.8. Any vector space is a free module.

Example 1.9. Z is a free module over Z. However, Z /27 is not free.

We want to define the rank of a free module as the number of copies of R in the sum.
Is this well defined? We must check that if R™ = R™, then m = n. However this is not
always true. When is this true?

This is true when R is a field.

This is false if R is the 0 ring.

This is true if R is commutative with R # 0.

Pick a maximal ideal I in R and suppose R™ = R". Reduce mod I, so (R/I)™ =
(R/I)™ as modules over a field R/I. So m = n because R/I is a field.

This is sometimes true if R is not commutatative (see below).

There exist rings R # 0 such that R = R @ R as R modules (see below).

Example 1.10. Take R = M, (K), the nx n matrices over a field K, and suppose R® = R,
These are vector spaces of dimension an? and bn?, respectively, so a = b.

Example 1.11. Here is an example of a ring R # 0 such that R =2 R @ R as R modules.
This is a possibly unsettling result. Homomorphisms from R™ to R™ can be identified with
m X n matrices, as in linear algebra. If R = R® R, we have a 1 X 2 invertible matrix!

Pick an abelian group A such that A =2 A® A, such as ZOZBZG---. Put R = End(A);
in our example, this is the set of co x oo matrices with only finitely many nonzero entries
in each row. Then R = Hom(A, A) = Hom(A,A® A) = R& R.

So the rank of a free R-module is not necessarily well-defined.



1.3 Projective modules

Given a free module M, we can recover the underlying set Sys; this is via a forgetful
functor F' from the category of modules to the category of sets. Likewise, given a set S, we
can form the free module Mg with basis S; this is also via a functor, F’. These functors
commute with morphisms in the following way:

MLSM

Jf |Fo

We say that the functors F' and F’ are adjoint. As a consequence, free modules are
projective.

Definition 1.9. A projective module P is a module with the following property. If the
sequence M — N — 0 is exact, then any map P — N lifts to a map P — M.

M—— N ——0

~
N
N
N
N
N

N

P
Proposition 1.1. The following are equivalent:
1. P is projective.
2. P®Q is free for some module Q.

Proof. (1) = (2) : Pick a free module F' so ¢ : F — P is onto. Then F' — P — 0, so
we can find a map P — F.

But then F splits as P & ker(yp).
(2) = (1): Exercise. O

Example 1.12. R=7/6Z =7/2Z® Z/3Z, so Z/27 and 7Z/3/Z are projective over Z/6Z
but not free.

Example 1.13. Let R be the ring of continuous functions on a circle S!, and let M = R.
Then we can think of M as continuous functions S' — S*xR. M is sections of S xR — ST,
which equals the real valued functions on S'. This is a vector bundle® over S.

3We won’t be going over vector bundles in detail in this course. If you don’t know what a vector bundle
is, see a topology course.



Consider a Mobius band, and view it as a vector bundle over S!, so each fiber is
isomorphic to R. Now define a module N to be the sections of this twisted vector bundle.
Then N is projective but not free.

N is not free because the orientations of the fibers change as you go around S'. It is
projective because N @ N = M @ M. At each point of S', consider the normal bundle.
Now take the orthogonal complement. So we get 2 Md6bius bands so at each point, and
their fibers intersect at every point. So we can think of N & N as the sum of 2 Md&bius
bands.

In effect, we can think of projective modules as “twisted free modules.”

Example 1.14. Let R = Z[/=5|; we can think of this as a rectangular lattice in C. Let
M = (2,1 + +/=5). The principal ideals here are rectangular with respect to this lattice
picture. Non-principal ideals are diamond shaped. Principal ideals here are free modules,
and nonprincipal ideals are not free.

We want to show that M is projective, and we do so by showing that M = R & R.

onto

We map g : R® R —— M by sending (1,0) — 2 and (0,1) — 1+ +/—5. We want to
construct a section f : M — R @ R, where g(f(m)) = m. So R® R = M & ker(g). Let
f(z) = (—z,2(1 ++/—5)/2), and check that f(xz) € R® R. So M is projective.



