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1 Modules

1.1 Basic notions and examples

1.1.1 Modules and homomorphisms

Informally, a module M over a ring R is like a vector space but over a ring.

Definition 1.1. A (left) module M over a ring R is an abelian group with a map R×M →
M sending (r,m) 7→ r ·m such that for r, s ∈ R and x, y ∈M

1. r · (x+ y) = r · x+ r · y.

2. (r + s) · x = r · x+ s · x

3. (rs) · x = r · (s · x)

4. 1R · x = x (if R has 1).

A right module is the same thing, except the map is M × R → R, so the actions of R on
M is on the right.

Definition 1.2. Let M be an R-module. A submodule N is a subgroup of M such that
r · n ∈ N for each r ∈ R and n ∈ N .

Definition 1.3. A homomorphism of modules M1,M2 is a map f : M1 →M2 such that

1. f(m1 +m2) = f(m1) + f(m2)

2. f(r ·m) = r · f(m).

Better (but not standard) notation would be that homomorphisms of left modules
should be written on the right (and vice versa for right modules). So we should write mf ,
not fm. This makes it so the second condition gives us that (rm)f = r(mf), which gets
rid of the needless switching of the order of r and f . We will alternate between the two
notations.
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Definition 1.4. Let M,N be modules over R. Then HomR(M,N) is the set of module
homomorphisms from M to N .

If R is commutative, HomR(M,N) is an R-module.

Definition 1.5. An endomorphism of M is a homomorphism from M to itself.

Definition 1.6. A bimodule is a left module over one ring and a right module over another,
where the left and right actions commute.

Example 1.1. R is an (R,R) bimodule.

1.1.2 Exact sequences of modules

Suppose we have the exact sequence

0→ A→ B → C → 0.

Are the following two sequences exact?

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ 0

0← Hom(A,N)← Hom(B,N)← Hom(C,N)← 0

The answer is no.1 Look at

0→ Z ×2−−→ Z→ Z/2Z→ 0.

Then
0→ Hom(Z/2Z,Z)︸ ︷︷ ︸

=0

×2−−→ Hom(Z/2Z,Z)︸ ︷︷ ︸
=0

→ Hom(Z/2Z,Z/2Z)︸ ︷︷ ︸
=Z/2Z

���→ 0

���0←Hom(Z,Z/2Z)
×2←−− Hom(Z,Z/2Z)← Hom(Z/2Z,Z/2Z)← 0.

Instead, we get exact sequences

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)

Hom(A,N)← Hom(B,N)← Hom(C,N)← 0.

We leave this as an exercise.

1The study of homological algebra is based on the fact that these sequences are not always exact in this
way.
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1.1.3 Examples of modules

Example 1.2. Vector spaces over fields are modules.

Example 1.3. Abelian groups are modules over Z.

Example 1.4. Left ideals of R are the same as left submodules of a module R.

Example 1.5. Let G be a group acting on a set S. Form the vector space V over K with
basis S, and form the group ring K[G]. G acts on V by acting on the basis elements. So
V is a module over the ring K[G].2

Example 1.6. Suppose M is a left module over a ring R. Then HomR(M,M), the
endomorphisms of M , is a ring, where the product is composition of endomorphisms.
M is a right module over HomR(M,M). Furthermore, the right action of HomR(M,M)
commutes with the left action of R on M (follows from the definition of a homomorphism).
So M is a HomR(M,M) bimodule.

HomR(M,M) is analogous to the permutations of a set S. If we have a group, we can
represent it as the permutations of the set S. Similarly, a ring is often studied as a subring
of HomT (M,M) for some T -module M .

Example 1.7. Take an algebraic number field such as Q[i], where i2 = −1. Think of Q[i]
as a vector space over Q, and think of the ring Q[i] as endomorphisms of this vector space.
So we can represent elements of Q[i] as matrices. Matrices are linear transformations of
vector spaces or equivalently homomorphisms of modules.

Pick a basis of Q[i]: {1, i}. The action of 1 is 1 → 1 and i → i and the action of u is
1→ i and i→ −1. So we have the matrices

1 =

[
1 0
0 1

]
, i =

[
0 1
−1 0

]
.

So Q[i] can be thought of as the matrices[
a b
−b a

]
with a, b ∈ Q.

Look at the invariants of matrices, the trace and the determinant. Here, tr(a+bi) = 2a,
and det(a+ bi) = |a+ bi|.

2The study of these modules is very important in representation theory.
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1.2 Free modules

Definition 1.7. The direct sum of modules Mα over R is the abelian group
⊕
Mα with

the action of R on each component α determined by the action of R on Mα.

Definition 1.8. A free module is a module that is a direct sum of copies of R.

In some sense, free modules are the simplest sort of module.

Example 1.8. Any vector space is a free module.

Example 1.9. Z is a free module over Z. However, Z/2Z is not free.

We want to define the rank of a free module as the number of copies of R in the sum.
Is this well defined? We must check that if Rm ∼= Rn, then m = n. However this is not
always true. When is this true?

• This is true when R is a field.

• This is false if R is the 0 ring.

• This is true if R is commutative with R 6= 0.

Pick a maximal ideal I in R and suppose Rm ∼= Rn. Reduce mod I, so (R/I)m ∼=
(R/I)n as modules over a field R/I. So m = n because R/I is a field.

• This is sometimes true if R is not commutatative (see below).

• There exist rings R 6= 0 such that R ∼= R⊕R as R modules (see below).

Example 1.10. Take R = Mn(K), the n×n matrices over a field K, and suppose Ra ∼= Rb.
These are vector spaces of dimension an2 and bn2, respectively, so a = b.

Example 1.11. Here is an example of a ring R 6= 0 such that R ∼= R ⊕ R as R modules.
This is a possibly unsettling result. Homomorphisms from Rm to Rn can be identified with
m× n matrices, as in linear algebra. If R ∼= R⊕R, we have a 1× 2 invertible matrix!

Pick an abelian group A such that A ∼= A⊕A, such as Z⊕Z⊕Z⊕· · · . Put R = End(A);
in our example, this is the set of ∞×∞ matrices with only finitely many nonzero entries
in each row. Then R = Hom(A,A) = Hom(A,A⊕A) = R⊕R.

So the rank of a free R-module is not necessarily well-defined.
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1.3 Projective modules

Given a free module M , we can recover the underlying set SM ; this is via a forgetful
functor F from the category of modules to the category of sets. Likewise, given a set S, we
can form the free module MS with basis S; this is also via a functor, F ′. These functors
commute with morphisms in the following way:

M SM

N SN

F

f F (f)

F ′

We say that the functors F and F ′ are adjoint. As a consequence, free modules are
projective.

Definition 1.9. A projective module P is a module with the following property. If the
sequence M → N → 0 is exact, then any map P → N lifts to a map P →M .

M N 0

P

Proposition 1.1. The following are equivalent:

1. P is projective.

2. P ⊕Q is free for some module Q.

Proof. (1) =⇒ (2) : Pick a free module F so ϕ : F → P is onto. Then F → P → 0, so
we can find a map P → F .

F P 0

P

ϕ

id

But then F splits as P ⊕ ker(ϕ).
(2) =⇒ (1): Exercise.

Example 1.12. R = Z/6Z = Z/2Z⊕Z/3Z, so Z/2Z and Z/3/Z are projective over Z/6Z
but not free.

Example 1.13. Let R be the ring of continuous functions on a circle S1, and let M = R.
Then we can think of M as continuous functions S1 → S1×R. M is sections of S1×R→ S1,
which equals the real valued functions on S1. This is a vector bundle3 over S.

3We won’t be going over vector bundles in detail in this course. If you don’t know what a vector bundle
is, see a topology course.
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Consider a Möbius band, and view it as a vector bundle over S1, so each fiber is
isomorphic to R. Now define a module N to be the sections of this twisted vector bundle.
Then N is projective but not free.

N is not free because the orientations of the fibers change as you go around S1. It is
projective because N ⊕ N = M ⊕M . At each point of S1, consider the normal bundle.
Now take the orthogonal complement. So we get 2 Möbius bands so at each point, and
their fibers intersect at every point. So we can think of N ⊕ N as the sum of 2 Möbius
bands.

In effect, we can think of projective modules as “twisted free modules.”

Example 1.14. Let R = Z[
√
−5]; we can think of this as a rectangular lattice in C. Let

M = (2, 1 +
√
−5). The principal ideals here are rectangular with respect to this lattice

picture. Non-principal ideals are diamond shaped. Principal ideals here are free modules,
and nonprincipal ideals are not free.

We want to show that M is projective, and we do so by showing that M = R ⊕ R.

We map g : R ⊕ R onto−−→ M by sending (1, 0) 7→ 2 and (0, 1) 7→ 1 +
√
−5. We want to

construct a section f : M → R ⊕ R, where g(f(m)) = m. So R ⊕ R = M ⊕ ker(g). Let
f(x) = (−x, x(1 +

√
−5)/2), and check that f(x) ∈ R⊕R. So M is projective.
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